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Deep learning handwriting recognition system

Sequence alignment

Connectionist Temporal Classification (CTC)

Focus on optical model only without language model nor
lexicon constraints
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State of the art

Recurrent models
Multi-Dimensional Long-Short Term Memory (MDLSTM)
[Pham2014]
Convolutional Neural Network + Bidirectional Long-Short
Term Memory (CNN+BLSTM) [Puigcerver2017]

Non-recurrent models
Fully Convolutional Networks (FCN) [Ptucha2018]
FCN with gating mechanism [Yousef2018; Ingle2019]

Do we really need recurrence for handwritten text
recognition ?
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Our baseline model - CNN+BLSTM
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(state-of-the-art results)
Recurrent model
8 convolutions
2.5 million of parameters

n : number of characters in the
alphabet
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Our Gated-CNN - overview
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Our G-CNN - gates

Gating mechanism
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RIMES dataset

Dataset characteristics
+1,300 writers
French writings
12,723 pages segmented into lines

RIMES dataset split

Training Validation Test Alphabet
9,947 1,333 778 100

Example
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First experiment : Raw comparison

Architecture
CER(%) CER (%) Training

Parameters (M)
validation test time

CNN+BLSTM 6.98 6.88 1d22h59 4.1
CNN+Dense only 17.73 19.03 1h10 1.5

G-CNN 9.92 10.03 10h00 6.9

BLSTM layers responsible for a large amount of parameters (2.6 M)

BLSTM layers increase performance dramatically (-12.15 in test)

G-CNN : more parameters but training time shorter (parallel
computing)
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Second experiment - Robustness against complexified data

Modified version of RIMES dataset
Lined paper background addition

Examples

Similar behavior - CER increased by 2.39 for the
CNN+BLSTM and 2.52 for the G-CNN
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Third experiment - Impact of data augmentation

7-time augmented training set
Raw
contrast alteration
sign flipping
long/short scaling
width/height dilation

CER decreased by 1.3 for the G-CNN and 0.94 for the
CNN+BLSTM
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Conclusion

CNN+BLSTM
Better performance
Longer training time

G-CNN
Deeper networks, bigger receptive fields
Architecture and tuning complex
Gating mechanism almost enables to reach the same
performance

Future works: exploring other alternatives
Toward an even lighter network with FCN
Attention models [Michael2019]

Have convolutions already made recurrence obsolete for unconstrained handwriting recognition ? 11 / 12



Context Studied architectures Experiments Conclusion References

References

[Pham2014] V. Pham et al. “Dropout Improves Recurrent Neural Networks for
Handwriting Recognition”. In: ICFHR (2014).

[Puigcerver2017] J. Puigcerver. “Are Multidimensional Recurrent Layers Really
Necessary for Handwritten Text Recognition?”. In: ICDAR. 2017,
pp. 67–72.

[Yousef2018] M. Yousef et al. Accurate, Data-Efficient, Unconstrained Text
Recognition with Convolutional Neural Networks. 2018.

[Ptucha2018] Felipe Petroski Such et al. “Intelligent Character Recognition using
Fully Convolutional Neural Networks”. In: Pattern Recognition 88
(Dec. 2018).

[Soullard2019] Y. Soullard et al. CTCModel: a Keras Model for Connectionist
Temporal Classification. 2019.

[Ingle2019] R. Ingle et al. A Scalable Handwritten Text Recognition System.
2019. arXiv: 1904.09150.

[Michael2019] Johannes Michael et al. Evaluating Sequence-to-Sequence Models
for Handwritten Text Recognition. 2019. eprint: 1903.07377.

Have convolutions already made recurrence obsolete for unconstrained handwriting recognition ? 12 / 12

http://arxiv.org/abs/1904.09150
1903.07377

	Context
	Studied architectures
	Experiments
	Conclusion

